Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 198: 105727, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225066

ABSTRACT

The citrus red mite, Panonychus citri (McGregor), is a globally important pest that has developed severe resistance to various pesticides. Lufenuron has been widely used in the control of the related pests in citrus orchard ecosystem. In this study, the susceptibilities of egg, larva, deutonymph and female adult of P. citri to lufenuron was determined, and the LC50 values were 161.354 mg/L, 49.595 mg/L, 81.580 mg/L, and 147.006 mg/L, respectively. Life-table analysis indicated that the fecundities were significantly increased by 11.86% and 26.84% after the mites were treated with LC20 concentrations of lufenuron at the egg or deutonymph stages, respectively. After eggs were treated with lufenuron, the immature stage and longevity were also affected, and resulted in a significant increase in r, R0 and λ. After exposure of female adults to LC20 of lufenuron, the fecundity and longevity of F0 generation significantly decreased by 31.99% and 10.94%, respectively. Furthermore, the expression level of EcR and Vg was significantly inhibited upon mites was treated with lufenuron. However, lufenuron exposure has a positive effect on fecundity and R0 in F1 generation, the expression of all reproduction-related genes was significantly up-regulated. In conclusion, there was a stimulating effect on the offspring population. Our results will contribute to the assessment of the resurgence of P. citri in the field after the application of lufenuron and the development of integrated pest control strategies in citrus orchards.


Subject(s)
Benzamides , Fluorocarbons , Mites , Tetranychidae , Animals , Ecosystem , Reproduction
2.
Insect Sci ; 31(2): 354-370, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37641867

ABSTRACT

Panonychus citri McGregor (Acari: Tetranychidae), a destructive citrus pest, causes considerable annual economic losses due to its short lifespan and rapid resistance development. MicroRNA (miRNA)-induced RNA interference is a promising approach for pest control because of endogenous regulation of pest growth and development. To search for miRNAs with potential insecticidal activity in P. citri, genome-wide analysis of miRNAs at different developmental stages was conducted, resulting in the identification of 136 miRNAs, including 73 known and 63 novel miRNAs. A total of 17 isomiRNAs and 12 duplicated miRNAs were characterized. MiR-1 and miR-252-5p were identified as reference miRNAs for P. citri and Tetranychus urticae. Based on differential expression analysis, treatments with miR-let-7a and miR-315 mimics and the miR-let-7a antagomir significantly reduced the egg hatch rate and resulted in abnormal egg development. Overexpression or downregulation of miR-34-5p and miR-305-5p through feeding significantly decreased the adult eclosion rate and caused molting defects. The 4 miRNAs, miR-let-7a, miR-315, miR-34-5p, and miR-305-5p, had important regulatory functions and insecticidal properties in egg hatching and adult eclosion. In general, these data advance our understanding of miRNAs in mite biology, which can assist future studies on insect-specific miRNA-based green pest control technology.


Subject(s)
Insecticides , MicroRNAs , Mites , Tetranychidae , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Insecticides/pharmacology , Insecticides/metabolism , RNA Interference
3.
Pest Manag Sci ; 79(3): 996-1004, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36318043

ABSTRACT

BACKGROUND: Panonychus citri is a major citrus pest worldwide. The short life cycle and high reproductive potential of P. citri, combined with heavy acaricide use, have led to high levels of resistance to acaricides, posing a threat to global resistance management programs. Here, resistance monitoring was established to determine the pyridaben resistance status of ten P. citri populations in China from 2014 to 2021 using a leaf-dipping assay. Four characterized strains-the susceptible strain (Lab_S), the resistant strain (Pyr_R), as well as the segregated resistant strain (Pyr_Rs) and the segregated susceptible strain (Pyr_Control) derived from the crossing of the Lab_S and Pyr_R strains, were used to evaluate the life-history characteristics using age-stage, two-sex life tables. RESULTS: Most P. citri populations developed high resistance to pyridaben. Resistance levels exceeded 1000-fold in Yuxi, Anyue, Nanning, and Ganzhou populations compared with the Lab_S strain. Compared with Pyr_Control, two key fitness cost criteria, developmental period and fecundity, showed significant differences in Pyr_Rs under consistent conditions. The intrinsic rate of increase, net reproductive rate and gross reproductive rate were lower in the resistant strain compared with the Pyr_Control strain. The Pyr_Rs strain had a lower relative fitness of 0.934 compared with the Pyr_Control. Moreover, the life-history traits and population parameters of the Pyr_R strain also showed significant differences compared with the Lab_S strain. CONCLUSION: The resistance levels to pyridaben varied greatly among the different P. citri populations and showed regional differences. Substantial fitness costs are associated with pyridaben resistance. This study provides potential implications for developing strategies for resistance management in P. citri. © 2022 Society of Chemical Industry.


Subject(s)
Acaricides , Pyridazines , Tetranychidae , Animals , Acaricides/pharmacology , China
SELECTION OF CITATIONS
SEARCH DETAIL
...